Solucionario Álgebra y Geometría Analítica 1 Edición Universidad Tecnológica Nacional



Álgebra y Geometría Analítica
1 Edición
Universidad Tecnológica Nacional
Álgebra Lineal , Matemáticas

Solucionario Álgebra y Geometría Analítica 1 Edición Universidad Tecnológica Nacional PDF


  1. Capítulo 1: Sistemas de ecuaciones lineales
  2. Capítulo 2: Matrices
  3. Capítulo 3: Determinantes
  4. Capítulo 4: Espacios vectoriales
  5. Capítulo 5: Transformaciones lineales
  6. Capítulo 6: Valores y vectores propios
  7. Capítulo 7: Diagonalización
  8. Capítulo 8: Geometría analítica en el espacio
  9. Capítulo 9: Introducción a los números complejos

Ejemplo de ejercicio del Solucionario de Álgebra y Geometría Analítica:

Supongamos que tenemos el siguiente sistema de ecuaciones lineales:

3x + 2y = 5

4x – 3y = 2

Para resolverlo, podemos utilizar el método de eliminación:

  1. Multiplicamos la primera ecuación por 4 y la segunda por 3:
    • 12x + 8y = 20
    • 12x – 9y = 6
  2. Restamos la segunda ecuación a la primera:
    • 12x + 8y – (12x – 9y) = 20 – 6
    • 12x + 8y – 12x + 9y = 14
    • 17y = 14
  3. Dividimos ambos lados de la ecuación por 17:
    • y = 14/17
  4. Reemplazamos el valor de y en la primera ecuación:
    • 3x + 2(14/17) = 5
    • 3x + 28/17 = 5
    • 3x = 85/17 – 28/17
    • 3x = 57/17
    • x = 19/17

Opiniones de estudiantes sobre el Solucionario de Álgebra y Geometría Analítica:

  • «El solucionario me ha sido de gran ayuda para comprender los conceptos del álgebra y la geometría analítica. Los ejercicios resueltos son claros y fáciles de entender.»
    – María Sánchez
  • «Me gusta cómo está organizado el solucionario, con su índice de capítulos es fácil encontrar el tema que necesito repasar. Además, los ejemplos resueltos me ayudan a practicar y mejorar mis habilidades en matemáticas.»
    – Juan Rodríguez
  • «El solucionario es una herramienta indispensable para mí. Me ha permitido resolver mis dudas y reforzar mis conocimientos en el área de álgebra y geometría analítica. Lo recomendaría a todos los estudiantes.»
    – Laura Gómez