Matemáticas Discretas |
4 Edición |
Richard Johnsonbaugh |
Matemáticas Discretas , Matemáticas |
Solucionario Matemáticas Discretas 4 Edición Richard Johnsonbaugh PDF
Índice de capítulos:
- Introducción a las matemáticas discretas
- Lógica matemática y demostración
- Conjuntos, relaciones y funciones
- Las estructuras algebraicas del álgebra del bool, las relaciones y álgebra de Boole
- La teoría de grafos
- Árboles
- Las técnicas de contar
- El principio de inclusión-exclusión
- Relaciones de recurrencia
- Lenguajes formales y autómatas
- Grafos dirigidos y máquinas secuenciales
- Reducción de problemas y NP-Completitud
Ejemplo de ejercicio:
Problema: Demostrar que la suma de los primeros n números enteros impares es igual a n^2.
Proof:
Supongamos que la afirmación es verdadera para n=k, es decir, la suma de los primeros k números enteros impares es igual a k^2. Queremos demostrar que también es verdadera para n=k+1.
La suma de los primeros (k+1) números enteros impares será:
- 1+3+5+…+(2k+1)
- = (k^2) + (2k+1)
- = k^2 + 2k + 1
- = (k+1)^2
Por lo tanto, hemos demostrado que la afirmación es verdadera para n=k+1 si es verdadera para n=k. Al aplicar el principio de inducción matemática, podemos concluir que la afirmación es cierta para todo número natural n.
Opiniones de estudiantes:
«El solucionario de Matemáticas Discretas de Johnsonbaugh me ha sido de gran ayuda para entender y resolver los ejercicios del libro de texto. Los ejemplos y explicaciones son claros y concisos, lo que facilita el aprendizaje de los conceptos.» – Juan
«Recomendaría este solucionario a todos los estudiantes de Matemáticas Discretas. Me ha ayudado a practicar y reforzar mis conocimientos, además de ofrecerme diferentes enfoques para resolver los problemas.» – María